
Node 2

Cluster schedulers need to be evolvable

• Scheduling requirements of modern distributed

applications are getting increasingly complex

• E.g., Distributed training requires affinity, anti-affinity

and gang scheduling – all in the same job

• Cluster frameworks must provide flexible scheduling

control without the complexities of implementing a

scheduler. Existing Schedulers are insufficient:

Example - Load Balancing and Co-location Benchmarks

def task(task_id):

set_resource(label=task_id, capacity=1)

...

def colocated_task():

...

Create load-balancing resources

set_resource(“load_bal”, 1, where={cpu: 8})

Create 3 pairs of tasks to co-locate and load balance

for i in range(0, task_count):

launch(task, id=i, resources={“load_bal”: 1})

Launch co-located task

launch(colocated_task, resources={i: 1})

ESCHER – Expressive Scheduling with Ephemeral Resources
Romil Bhardwaj, Alexey Tumanov, Richard Liaw, Stephanie Wang, Philipp Moritz, Robert Nishihara, Ion Stoica

romilb@cs.berkeley.edu

ESCHER Abstractions

ESCHER Workflow

Scheduler matches tasks resource requirements to
node resource availabilities

Frameworks provide an API for applications
to create resources on nodes at runtime

def set_resource(label, capacity, node_spec=None)

Grants applications control over
resource management

Can specify resource availability
constraints for resource creation

Node 1

Resources: {CPU: 0}Resources: {CPU: 8} Resources: {CPU: 8}

Scheduler

Task 1

ResReq: {CPU: 1}

Node 3

A simple resource matching scheduler can be induced to
make targeted placement decisions with short-lived

ephemeral resources

Node 1

Resources: {CPU: 0}

Node 3

Resources: {CPU: 8}

Node 2

Scheduler

Task 1

Ephemeral Resource

Resources: {CPU: 8, my-res: 1}

ResReq: {CPU: 1, my-res : 1}

• These abstractions are sufficient to allow applications to express any
arbitrary scheduling policy

• Applications can use resource management to declaratively specify and
execute scheduling constraints

Combining the Abstractions

AlphaZero on ESCHER

ESCHER is 2x faster in
exploring Go board states

than an unaware scheduler

Board Exploration Latencies

Performs comparably with a
hard-coded policy, while

requiring only 5 lines of changes

Distributed Training on ESCHER
Ported Gandiva’s[1] scheduling policies to Ray

Tune - 38% speedup with just 40 lines of code.

Abstraction 1: Resource matching scheduler Abstraction 2: Create resources at runtime

Node 1

Resources

{CPU: 8, load_bal: 1}

Node 3

Resources

{CPU: 6, task1: 0, load_bal: 0}

Node 2

Resources

{CPU: 6, task3: 0, load_bal: 0}

Task 1 Task 1a Task 2 Task 2a

ESCHER has implementations of data locality, bin-packing, anti-
affinity, soft constraints, gang scheduling, WFQ and compositions

[1] OSDI 18

Resource
Specification (R)

ESCHER Scheduler

ESCHER Scheduling Library

(ESL)

Application

Request Scheduling
Policy

1

ESCHER
API Calls

2

3 4

Cluster
State

Launch Task
with R

set_resource() get_cluster_state()

{CPU = 8,

co-loc = 4}

{CPU =

4}

{CPU = 8,

GPU = 4}

{CPU = 2,

data-loc = 1}

{CPU = 0,

load-bal = 1}

Node 1 Node n

A
p

p
li

c
a

ti
o

n

S
p

a
c

e
F

ra
m

e
w

o
rk

P
h

ys
ic

al
C

lu
st

e
r

Kubernetes MapReduce on ESCHER

Job Makespan

• ESCHER Scheduling Libraries (ESLs) encapsulate complexity of

using ephemeral resources into reusable libraries.

Scheduling Policy +
Scheduling Mechanism

App
Scheduling Policy +

Scheduling Mechanism

App
Scheduling Policy +

Scheduling Mechanism

App
Scheduling Policy +

Scheduling Mechanism

AppApp

App
Application

Layer

Cluster
Framework

Monolithic Schedulers

Simple, but hard to evolve

Two-level Schedulers
Highly evolvable, but complex

