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Police cameras on US roads doubles in three years

The number of police CCTV cameras monitoring US roads has almost doubled
in the last three years, and are projected to record 75 million images daily.
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CCTV cameras on Britain's roads capture
26 million images every day
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LSE News

Speed cameras reduce road accidents and traffic deaths,
according to study




Conventional Traffic Camera Uses

Manual Surveillance Post-facto Incident Review



Emerging Traffic Camera Use Cases

Vehicle Speed Measurement Traffic Analytics Near Miss Stats
(without dedicated sensors)

All require distance measurements in the scene




Measuring Distances in an Image

Camera Calibration
Real-world Coordinates (m) <-> Image Coordinates (px)




Camera Calibration
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“Hard” Callbratlon
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“Soft” Callbrat|on
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“Soft” Calibration - Prior Art

Chessboard Calibration 4

Vanishing Points

Geometric Landmarks

No Chessboard Patterns
in Traffic Views

Assumption of
Straight Line Motion

Assumption of
Landmarks




AutoCalib Overview

AutoCalib

Traffic Video Calibration Estimate

AutoCalib: no humans-in-the-loop, robust calibration




AutoCalib - Pipeline

Cropped Image Vehicle Keypoints Vehicle Geometric Dimensions
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Vehicle Detection
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Vehicle Detection

e Off-the-shelf DNNs (Fast-RCNN, YOLO)
promise state of the art accuracy

* Expensive, scene often empty

e Background Subtraction is fast
* Inaccurate

Solution - Trigger the DNN with Background Subtraction

Keyp0|.nt —» Calibration [—®| Calibrations Set — Geom(.etry vaises CalllB e e
Extraction filters Values

Video Frames —»  Vehicle Detection ——P




Key-point Extraction
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Key-point Selection

Desired Properties

1. Visually Distinct

e Ease of detection

2. Non-planar

e Robust Calibrations
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Key-point Extraction

e Statistical vision based techniques aren’t

robust to lighting variations

* DNNs require a lot of labelled data
* No datasets available

Transfer learn a DNN on a smaller dataset
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Transfer Learning - Primer

Output:
BMW 3 Series

Convolution and Pooling Layers Fully Connected Layers
(Generic Features) (Car Model Classification)



Transfer Learning - Primer

Output:
Key-points (x,y)

Transfer Learning - Less Data, Faster Training




Key-point DNN Dataset

* Manually labelled key-points on 486 car images
* Image Augmentation

Original Original Original Img Horz Mirror Horz Mirror Horz Mirror

Crop Rotate Rotate Crop
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Key-point DNN Training

* GooglLeNet architecture trained on CUHK CompCars dataset (CVPR ‘15)

for Car make/model classification
* Replaced last two fully connected layers with keypoint regression

outputs
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Key-point DNN Performance

DNN Annotation Performance
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Calibration Estimation
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Vehicle Identification at low resolution...

... iIs hard!

(for both, humans and machines)
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Can’t identify... so, approximate!

Calibrate with most popular cars

(Toyota Prius, Toyota Corolla, Honda Civic, Volkswagen Jetta, BMW 320i, Audi A4, etc.)
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Errors in Calibration

Statistical filters to remove outliers and average
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Key Insight 1

Ground plane should be consistent across all Calibrations
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The Orientation Filter

1. For calibration (Ri, Ti), its Z-axis orientation Z

is defined by vector Ri,3
2. LetZ,,, = Average(R! ;)

3. Pick n% calibrations with the least deviation

- -
between z and zZ,,,
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Key Insight 2

%

<A

Distance to a fixed point must be consistent across Calibrations
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The Displacement Filter

* Focus region: Region where cars are

detected ,
(]
e For each Calibration: e

1. Point pi = projection of center of di
focus region on the ground plane
using (R, T")
2. d; = Distance of p' to camera
* Pick middle n% and filter the rest (4,

l
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Filtering Overview
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Implementation

Azure Service — 4 Tesla K80s, 224 GB RAM

< 12% error with ~8 minutes of video




Evaluation - Dataset

e 350+ hours from 10 traffic cameras in

Seattle

e Resolution - 640x360 to 1280x720

e Ground truth distances and calibration

estimated using Google Earth

Google Earth View



Fvaluation



AutoCalib vs Manual Calibration

Ground Distance Measurement, RMS Error (%)
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AutoCalib achieves <12% RMS error in measuring distances




AutoCalib vs Prior Art

Ground Distance Measurement, RMS Error (%)
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AutoCalib outperforms prior state of the art approaches
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Does more video data help?
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AutoCalib converges with increasing vehicle detections




Application — Speed Measurement
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AutoCalib Summary

e Camera Calibration

 Enables distance measurements

* Highly manual today
* AutoCalib

 Scalable automatic calibration ] S |
. )/}_ ‘\ -5,
e Uses DNNSs to analyze vehicle geometry , :

* Experiments
* < 12% error in measuring distances

e Calibrates with few hundred detections




