AutoCalib: Automatic Calibration of Traffic Cameras at Scale

Romil Bhardwaj[†], **Gopi Krishna Tummala^{*}**, Ganesan Ramalingam[†], Ramachandran Ramjee[†], Prasun Sinha^{*}

⁺Microsoft Research, *The Ohio State University

Police cameras on US roads doubles in three years

ĬZ)

The number of police CCTV cameras monitoring US roads has almost doubled in the last three years, and are projected to record 75 million images daily.

ras 250 CCTV cameras on Britain's roads capture 26 million images every day Num 150 LSE News Speed cameras reduce road accidents and traffic deaths, according to study

Conventional Traffic Camera Uses

Manual Surveillance

Post-facto Incident Review

Emerging Traffic Camera Use Cases

Vehicle Speed Measurement (without dedicated sensors)

Traffic Analytics

Near Miss Stats

All require distance measurements in the scene

Measuring Distances in an Image

Camera Calibration Real-world Coordinates (m) <-> Image Coordinates (px)

Camera Calibration

$$y = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} x$$

Image Coordinates Intrinsic Matrix (Focal length, camera center) Extrinsic Matrix (Rotation, Translation)

Real World Coordinates

"Hard" Calibration

$$y = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} x$$

Image Coordinates Intrinsic Matrix (Focal length, camera center)

(Rotation, Translation)

Extrinsic Matrix

Real World Coordinates

Not Scalable!

"Soft" Calibration EPnP Solver

$$y = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} x$$

Image Coordinates Intrinsic Matrix (Focal length, camera center)

Extrinsic Matrix (Rotation, Translation)

Real World Coordinates

"Soft" Calibration - Prior Art

Chessboard Calibration

No Chessboard Patterns in Traffic Views

Vanishing Points

Geometric Landmarks

Assumption of Straight Line Motion

Assumption of Landmarks

AutoCalib Overview

Traffic Video

Calibration Estimate

AutoCalib: no humans-in-the-loop, robust calibration

AutoCalib - Pipeline

Cropped Image

Vehicle Keypoints

Vehicle Geometric Dimensions

Vehicle Detection

Vehicle Detection

- Off-the-shelf DNNs (Fast-RCNN, YOLO) promise state of the art accuracy
 - Expensive, scene often empty
- Background Subtraction is fast
 - Inaccurate

Solution - Trigger the DNN with Background Subtraction

Key-point Extraction

Key-point Selection

- **Desired Properties**
- 1. Visually Distinct
 - Ease of detection
- 2. Non-planar
 - Robust Calibrations

Key-point Extraction

- Statistical vision based techniques aren't robust to lighting variations
- DNNs require a lot of labelled data
 - No datasets available

Transfer learn a DNN on a smaller dataset

Transfer Learning - Primer

Transfer Learning - Primer

Transfer Learning - Less Data, Faster Training

Key-point DNN Dataset

- Manually labelled key-points on 486 car images
- Image Augmentation

Total of 10,344 images post augmentation

Key-point DNN Training

- GoogLeNet architecture trained on CUHK CompCars dataset (CVPR '15) for Car make/model classification
- Replaced last two fully connected layers with keypoint regression outputs

Key-point DNN Performance

Calibration Estimation $y = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} x$

Image Coordinates Intrinsic Matrix (Focal length, camera center) Extrinsic Matrix (Rotation, Translation)

Real World Coordinates

Vehicle Identification at low resolution...

... is hard! (for both, humans and machines)

Can't identify... so, approximate!

Calibrate with most popular cars

(Toyota Prius, Toyota Corolla, Honda Civic, Volkswagen Jetta, BMW 320i, Audi A4, etc.)

Errors in Calibration

Statistical filters to remove outliers and average

Key Insight 1

Ground plane should be consistent across all Calibrations

The Orientation Filter

1. For calibration (R^i, T^i) , its Z-axis orientation \vec{z}

is defined by vector $R_{*,3}^i$

2. Let
$$\vec{z}_{avg} = Average(R^i_{*,3})$$

3. Pick n% calibrations with the least deviation

between \vec{z} and \vec{z}_{avg}

Distance to a fixed point must be consistent across Calibrations

The Displacement Filter

- Focus region: Region where cars are detected
- For each Calibration:

Vehicle Detection

Video Frames

1. Point p^i = projection of center of focus region on the ground plane using (R^i, T^i)

Keypoint

Extraction

Calibration

Calibrations Set

- *2.* d_i = Distance of p^i to camera
- Pick middle n% and filter the rest

Geometry based

filters

Calibration

Values

Filtering Overview

Video Frames

Values

Implementation

Azure Service – 4 Tesla K80s, 224 GB RAM

< 12% error with ~8 minutes of video

Evaluation - Dataset

- 350+ hours from 10 traffic cameras in Seattle
- Resolution 640x360 to 1280x720
- Ground truth distances and calibration estimated using Google Earth

Camera Image

Google Earth View

Evaluation

AutoCalib vs Manual Calibration

Ground Distance Measurement, RMS Error (%)

AutoCalib achieves <12% RMS error in measuring distances

AutoCalib vs Prior Art

Ground Distance Measurement, RMS Error (%)

AutoCalib outperforms prior state of the art approaches

[1] Dubská et al., Fully automatic Roadside Camera Calibration for Traffic Surveillance. IEEE ITS 2015

Does more video data help?

AutoCalib converges with increasing vehicle detections

Application – Speed Measurement

AutoCalib Summary

Camera Calibration

- Enables distance measurements
- Highly manual today

AutoCalib

- Scalable automatic calibration
- Uses DNNs to analyze vehicle geometry

• Experiments

- < 12% error in measuring distances
- Calibrates with few hundred detections

